
Teachers Learning Code Digital Toolbox: Quick Start Guide | 1

DIGITAL
TOOLBOX:
Quick Start Guide

Table of Contents

WELCOME

3 Introduction and Learning Objectives

CODING FOR BEGINNERS

4 What is code?

5 Why teach computer science and coding?

6 Computational Thinking

7 Coding Concepts and Terminology

10 Debugging Strategies: Prompts & Checklists

LESSON PLANNING

12 Minimum Requirements

13 Lesson Structure

14 Educator Preparation Checklists

15 Lesson Plan Modifications

APPENDIX: TEACHING WITH TECHNOLOGY

17 Tips for Teaching Code and Having Fun while Doing It

19 Facilitation Strategies

20 Managing Behaviour in the Presence of Technology

For more great lesson plans,
check out our website:
canadalearningcode.ca/
lesson-plans

teacherslearningcode.com | 4

Welcome to the Digital Toolbox:
Quick Start Guide!
What is the Digital Toolbox series?

The Teachers Learning Code Digital Toolbox is a series of guides designed to give
educators the general skills, knowledge, and confidence to introduce technology and
coding concepts to their K-12 learners.

In this series, we share resources to familiarize yourself with, tips and tricks for
teaching digital skills, and lesson plans to empower and teach the future generation
of technologists across Canada.

Quick Start Guide

The guide you are reading right now is our
Quick Start guide and includes high-level
information on how to bring computer science
and coding into your classroom. This guide
is designed to be used in conjunction with
our more specific ‘how-to’ guides, which
include not only the basics of our favourite
technologies and coding tools, but also lesson
plans ready-made for classroom delivery!

Who are the Digital Toolbox guides for?

The Digital Toolbox guides were designed
specifically with K-12 educators in mind, but
can be used and adapted by non-traditional
educators, such as program coordinators at
community centres, homeschooling parents,
Girl Guide troop leaders, etc., as well.

What will the Digital Toolbox
accomplish?

Through computer science education, we
want to inspire all people in Canada to
become empowered digital citizens who can
understand, participate, and shape our country
as creators and innovators of technology.

Learning Objectives

After reading the Teachers Learning Code Digital
Toolbox: Quick Start Guide, educators will be able to…

• Identify the skills and competencies covered by

teaching computer science and coding

• Define foundational coding concepts and and
explain them using relatable analogies

• Identify and modify (or “remix”) elements of Canada
Learning Code lesson plans

• Apply 4 strategies for modifying the curriculum to
meet unique learner needs

• Support learners through the process of debugging
and troubleshooting technological projects by using
the debugging prompts and checklist

• Apply 7 strategies for the facilitation of technology-
based workshops

Who built the Digital Toolbox guides?
The Digital Toolbox series was developed by Teachers
Learning Code under the national charity Canada
Learning Code. The lesson plans have been developed
in partnership with educators and industry-leading
experts as indicated.

Teachers Learning Code Digital Toolbox: Quick Start Guide | 5

Coding for Beginners

What is Code?

The simplest explanation for code is that it is a set of instructions that are
given to a computer in order to execute a certain task. When we put these
instructions together in a certain order, we call this an algorithm (a set of
step-by-step instructions to follow in order to solve a problem).

Computers take direction extremely literally, which means that any instructions in your

algorithm should be precise and specific. For example, when reading a peanut butter

and jelly sandwich recipe (an algorithm in itself!), a human would likely understand that

“Put the jam on the bread” is the direction to spread some jam on a slice of bread. A

computer, however, might interpret this entirely differently. Should the robot put the jar

of jam on top of the bread bag? This might seem silly to you, but you will soon see how

literally a computer takes direction. A clearer set of instructions for our robot might be:

1. Turn the lid on the jam counterclockwise until it is completely loosened

2. Lift the lid off the jar of jam

3. Place the lid beside the jar of jam

… and so on. Watch a great demonstration of this concept at bit.ly/pbandj-challenge.1

Code is extremely versatile; we can use it to control computers/robots, build webpages,

create video games, analyze large datasets, and more! The possibilities are endless.

While we use different coding languages to complete different tasks (e.g. HTML & CSS

for web-building, R for data analysis, Scratch for game building, MakeCode and python

for micro:bit, and Javascript for flying robots!), each of these languages is really just a

different way of communicating your instructions, or your algorithm, to the computer.

teacherslearningcode.com | 6

Why Teach Computer
Science and Coding?
In addition to teaching important skills
and competencies, Computer Science
education will also equip learners with the
capacities and dispositions required to meet
the needs of their times.

Discovery: Computer Science education will

inspire learners to approach problems with

curiosity and a sense of discovery. It will

encourage learners to try new things, approach

tasks with a growth mindset, and iterate as they

master new skills.

Critical Thinking: Having a better understanding

of how computers operate will equip learners to

more critically engage the social, legal, ethical, and

political implications of technology.

Team Work: Computer Science encourages

learners to work together and develop projects,

promoting effective communication, project

management skills, and empathy for the

perspective of others. It also encourages learners

to constructively give and receive feedback and

fosters a willingness to help and share with others.

Citizenship: Computer Science education will help

learners understand the ways in which technology

impacts society, helping them to become

technological stewards who will harness the power

of technology to improve the world around them.

Resilience: Creating digital artifacts will help

learners to become more comfortable with

trying new things, making mistakes, and learning

through experience. By stressing the importance

of continuous and unexpected learning, learners

will ultimately become more resilient and see

opportunity in failure.

Creativity: Computer Science will encourage

learners to explore their creativity, think outside

the box, and develop innovative solutions to

address issues that affect them, their community,

and the world.

Computational Thinking: Computer Science

will help learners employ computational thinking

strategies to problems within and outside the

digital world. See the ‘Computational Thinking’

section for more information.

Fundamental Programming Concepts: Computer

Science education teaches the programming

concepts that are the shared foundation of

hundreds of unique programming languages.

When learners understand these key concepts,

they are able to switch languages more seamlessly.

See the ‘Coding Concepts and Key Terminology’

section for more information.

Teachers Learning Code Digital Toolbox: Quick Start Guide | 7

Computational Thinking
Computational thinking involves the thought processes and strategies involved in formulating

a problem and articulating the solutions in such a way that a computer (or another human)

could action on. It involves breaking big problems into smaller parts, and describing specific

steps to overcome these smaller challenges. Computational thinking concepts aren’t unique to

coding—you’ll notice they are the principles many people use in their day-to-day lives to solve

problems of all sorts.

Computational thinking involves the following key steps:

I. Decomposition
Decomposition involves breaking down large problems into smaller, more manageable, steps,

just as we might break down a book report into different sections.

II. Pattern recognition
Pattern recognition involves identifying the shared characteristics of these smaller problems to

help us make predictions, create rules, and solve problems more generally.

III. Abstraction
Abstraction involves isolating differences between our smaller problems in order to make one

solution work for multiple problems. In this way, abstraction helps us decide what’s important

and what’s not. It helps manage complexity, like when we decide what information is needed

to help solve a math equation or word problem.

IV. Algorithms
Creating an algorithm means creating a set of step-by-step instructions to follow in order to

solve the identified problem(s). Algorithms are common in our everyday lives — a lesson plan

is an algorithm for a class, while a recipe is an algorithm for making our favourite dish. Writing

out step-by-step instructions in plain English is what we call ‘pseudo code’.

Coding Concepts and Terminology
There are hundreds of computer programming languages, and although they may look nothing

alike, they are built on a shared foundation of key concepts.

As you will see, many of these coding concepts come up in daily life and aren’t as daunting

as you might think. Consider using the real-world examples provided when explaining difficult

concepts to your learners!

teacherslearningcode.com | 8

Coding
Concepts and
Terminology

There are hundreds of computer programming languages, and although they may look

nothing alike, they are built on a shared foundation of key concepts.

As you will see, many of these coding concepts come up in daily life and aren’t as

daunting as you might think. Consider using the real-world examples provided when

explaining difficult concepts to your learners!

Concept/Term Definition Real-World Example or Analogy

Algorithm A set of step-by-step instructions to
follow in order to solve a problem

We all follow a similar algorithm when brushing our teeth.
We put toothpaste on our toothbrushes, scrub our teeth with
said toothbrush, and then rinse our mouths.

Arrays A special variable that can store
more than one value at a time; items
are ordered by a number so that we
can access them later

An array is like a photo album for your last family trip. The
album allows us to store lots of related memories (photos!)
in one place. When we want to look back at these specific
memories, we just pull up the photo album.

Boolean Logic ‘and’, ‘or’, ‘not’ are examples of
boolean operators; values that are
either true or false

We could use boolean logic to sort cats based on their fur
colour.
Group 1: Cats that are black AND white
Group 2: Cats that are fully black OR white
Group 3: Cats that are only black, NOT white

Bug An error in a program that
prevents the program from
running as expected

When you turn on your hose to fill your pool, you expect that
water will come out of its opening. Kinks interrupt the water
flow and prevent the hose from working as expected. In this
case, the kink is a bug!

Coding Language Means through which humans
communicate with computers (e.g.
HTML & CSS, Python, Scratch,
JavaScript, etc.)

We all speak different languages to each other based on what
we understand. In this guide, we are using English, but you and
your family members might speak a different language. Just
like we have different languages to speak to one another, the
computer has different coding languages to use or interpret.

Command An instruction for the computer Just like we ask trained dogs to complete tricks or commands,
we can command computers!

Conditional
statements

Allow computers to make decisions
based on certain conditions
being met; if/else statements are
commonly used in conditional
statements

We use conditional statements when we make decisions
about our lives all the time! For example:

If it is raining, then I will use my umbrella. If it’s not raining, I
won’t!

Debugging The act of finding problems or ‘bugs’
in our code and solving them

In the hose example, the debugging process would involve 1)
looking along the entire length of the broken hose to identify
any problems (a hole, a kink), and 2) taping the hole or
straightening the kink!

Events When one act triggers another to
occur

When the clock strikes 12 PM, we eat lunch! At 3 PM, we leave
school!

Teachers Learning Code Digital Toolbox: Quick Start Guide | 9

Coding Concepts and Terminology

Concept/Term Definition Real-World Example or Analogy

Function A named section of a program that
performs a specific task; can be
used over and over again

Think of a function as the chorus of a song. When you are
writing a song, you only have to compose the chorus once
because it is repetitive. After composing and labeling it as
the chorus, you can write “Chorus” anywhere you want it to
be repeated within the song, and people will know what you
mean! This saves time.

Index The specific location of an item
in an array; the first item in an
array has an index of 0

When your teacher takes attendance, they are reading
from a list (or an array) of all the students in your class.
Depending on your last name, you will appear at a certain
place (or index!) on this list.

Input Information the computer senses
from its environment or information
the user supplies to the computer

When we want a certain bag of chips from a vending
machine, we press a letter and number (e.g. A5). This is
known as the input.

Loops Allows us to run the same
sequence multiple times, as long
as a certain condition is met

As long as it is still dirty, I will continue to wash my dish. I
will only stop when the dish is completely clean!

Some loops can go on forever! A real life example of this is
time. Time goes on... forever! It never stops.

Modularizing Exploring connections between the
whole and its parts

In modular code, the larger program is divided into smaller
parts for easier management and readability. Each of these
smaller parts has its own role within the larger program!
Think of this as a team working on a school project. If one
person tried to complete the entire project, it would be
much more difficult to manage. Dividing up the tasks makes
it easier for everyone to function and for the project to be
completed more efficiently (as long as the team members
are willing to communicate!)

We also use modularization when solving math equations
like =4x7+5÷2. In order to solve this problem, we break it
into smaller chunks like (4x7) and then (5÷2).

Operators Mathematical and logical
expressions

Relational operators are used for
comparison (e.g. == (equals), !=
(does not equal), >= (greater than
or equal to), etc.)

Arithmetic operators are used for
calculations (e.g. + (addition), -
(subtraction), etc.)

Symbols dictate our actions all the time! When we see
a stop sign, we stop. We know how to leave buildings
by looking for the EXIT sign. We know what the ‘+’ or ‘-’
symbols mean when we are calculating the answer to a
math problem, and our computers use these same (or
very similar!) symbols.

Output Information the computer supplies
to its user

After we press a letter and number (e.g. A5) in our vending
machine example, the machine releases our treat as the
output.

teacherslearningcode.com | 10

Coding Concepts and Terminology

Concept/Term Definition Real-World Example or Analogy

Parallelism Making things happen at the same
time

Can you rub your belly and tap your head at the same
time? This is a real-world example of parallelism where our
brains are instructing our arms to do 2 separate things at
the same time!

Program An algorithm that has been coded
to be run by a machine; written in a
coding language (synonymous with
‘code’ and ‘software’)

Think of a program as a secret family recipe that was passed
down from your grandparents. The recipe is the algorithm
and the fact that it was written down to be prepared by
someone else makes it similar to a program (Keep in mind
that programs are only run by computers, not people!)

Remixing The process of taking an existing
project or idea and making it new
by changing or adding to it

DJs remix popular songs by changing the tempo, adding
additional sounds, sampling from other songs, etc.

Sequence An ordered series of steps for a
task; computers read and perform
tasks in order from top to bottom

Think back to our algorithm example. Have you ever
tried to brush your teeth by rinsing your mouth first
and scrubbing your teeth with toothpaste second? The
sequence or order of the commands matters!

State State in a programming sense is
just the same as state in a non-
programming sense (ie. the TV is
on or off). Variables have states,
values don’t. For example, 42 is 42
and there’s nothing you can change
about it

The state of a TV or light switch can be on or off!

String A type of data that represents text Any line of text can be a string. A word, a sentence, a line
of gibberish, etc.

Syntax A set of rules for physically writing
the coding language such that
computers are able to understand;
Scratch and the MakeCode editors
blockly structure removes the need
for syntax

Different human languages (like English, Spanish, and
French) have different vocabularies and figures of speech,
as well as spelling and grammar rules that we must follow.
When we don’t follow these rules, other people may find it
difficult to understand what we mean. Using proper syntax
for coding languages ensures the computer is able to
understand our commands!

Variable
Allow us to store a single piece of
information

We can think of a variable as our piggy bank or wallet,
which stores our money. The amount of money we have
can change depending on our actions. Did we pay rent
or go on a shopping spree? If we want to know how
much money we have at any given time, we just need to
look inside our piggy bank or wallet.

Teachers Learning Code Digital Toolbox: Quick Start Guide | 11

Debugging Strategies
It can be tempting to jump in and solve your learners’ problems when they get frustrated, but troubleshooting
and making mistakes is an important part of the learning process.

When something goes wrong with a project, be calm and use it as a teaching opportunity to show your learners
how to debug technology and think through problems. Set expectations! Let learners know that encountering a
block of code that doesn’t work as expected is simply a part of programming. Debugging is coding!

Prompts
Consider using these prompts to encourage and motivate learners who might be having trouble getting started
with the debugging process2:

“Let’s break this down. What should we do first?”

“If I’m the user of this project, how am I supposed to be interacting with it?”

“If you read the code you’re building like you are reading a sentence, what do you notice? Is anything
missing?”

“What are you trying to do? What do you think isn’t working? What have you tried already?”

“Go [here]. Do you see anything there that might be useful for this problem?”

Checklist
Ask your learners to use the following checklist when debugging3,4,5:

Have you tried...

Reading your code aloud?
Reading your code aloud, in a similar way
to how you would read a sentence, can be
helpful for identifying gaps in logic or missing
components.

Asking a friend to review your problem? Or
working on the problem together?
Sometimes a fresh set of eyes is all it takes.

Isolating and testing your code?
Revert back to stable code that you know
works. Then, try testing out the additional lines
of your code by removing one command at a
time. Add the commands back one-by-one until
you replicate your problem.

Thinking like a computer?
Are your steps specific enough? Remember,
computers aren’t very smart. We have to tell
them exactly what to do.

Looking it up?
Google is your friend! If there is something wrong
with your WiFi, laptop, keyboard, code, etc., try
typing the issue into Google and see if there’s a
solution! There often will be!

If Google isn’t useful, all digital tools usually have
a ‘Help’ or ‘Reference’ section you can explore.

Trying something new out?
When in doubt, try it out! There is always the
undo and redo button!

Taking a break?
It can be difficult to think clearly when we are
frustrated.

Resetting the machine?
Though resetting may not be an ideal solution
when you are coding, if you are working with
unresponsive hardware like robotics, this might
be the solution.

teacherslearningcode.com | 12

Lesson Planning
There are many ways to bring coding to your
youth! You could start an after-school coding
club or incorporate coding into pre-existing
classes. For example, instead of having your
learners write a report on a historical figure or
incident, you might ask them to create a website
instead! The possibilities are endless!

Minimum Requirements

You will need:

An Educator
To supervise learners and facilitate sessions and coding challenges.

Volunteer Mentors (optional, but recommended)
To support learners with their questions as the educator leads the session. Consider asking more
advanced learners to play this role.

Content
Consider using the lesson plans in our Digital Toolbox series or the lessons on our website at
https://www.canadalearningcode.ca/lesson-plans/.

Access to Hardware

Laptop or desktop computers (at least 1 per pair of learners)

Extension cords and power bars

Projector, projector screen, and appropriate dongles to connect (or another way to display
your screen to learners)

Hardware (as specified in lesson plan or ‘how-to’ guide)

WiFi connection (optional, but recommended)
Some tools can be used without an internet connection, while it is a strict requirement for others.

How should our room be set up?
Each room should have 1 educator computer and a projector/screen to display the slides to
your group. Laptops for learners should be set up such that the educator’s screen is visible
from any seat.

Teachers Learning Code Digital Toolbox: Quick Start Guide | 13

Suggested
Structure
of a Lesson
We recommend that
each lesson include
these main sections:

1. Introduction

The introduction sets the stage for the lesson. Start the session
with an icebreaker and a review of classroom expectations. At
Canada Learning Code, we refer to these expectations as our
Coders’ Code (see ‘Managing Behaviour’ section for additional
details on this concept). After this, pose essential questions
related to the topic of the workshop and provide any background
information necessary. Wrap up this section by showing the
learners an example of the main project they will be building!

2. Code-Along

During the Code-Along, you should introduce or review the
main tool being used through an exploratory learning activity.
Give learners a chance to play around with and test out the tool,
providing a bit of structure through ‘challenges’. Demonstrate
problem-solving and resourcefulness while solutioning by asking
(rather than telling) learners where to find things, verbalizing your
thought process from A to B, and redirecting questions towards
other learners, or towards the reference.

3. Work Session

During the Work Session, start by giving the learners the chance
to work with you to build the main project by answering questions
and completing challenges with your guidance. At this point, the
Work Session may look similar to the Code-Along. As they get
comfortable, provide learners with more independent time for
finishing the project and adding customizations (remixing!) on their
own. Educators should walk around to support learners as they
build. If learners complete the project, challenge them with the add-
ons or extensions found in the lesson plan.

4. Wrap-up

As you wrap-up the lesson, give learners the chance to see what
their friends have created! You might have learners present their
project at the front of the room, or lead a Gallery Walk, where
learners open their laptops, tuck in their chairs, and walk around
the room to explore each other’s final projects. Before you send
learners off, be sure to review any coding concepts covered, as well
as learning outcomes achieved!

teacherslearningcode.com | 14

Educator Preparation Checklists
Before each lesson...
Prep Time: 2 hours

Review the lesson plan and any supporting materials (slides, example project, solution
sheet, handouts, etc.)

Review relevant coding/programming concepts and ensure you are confident
describing them to your group

Code and/or build (if applicable) the main project, ensuring you are comfortable
with all outlined steps (consider sharing this project with your group as an
example!)

Run through the lesson to minimize the risk of tech issues

Create online accounts (if applicable)

Prepare for WiFi failure

Print a copy of the lesson plan and solution sheet

Download offline software and transfer the files to a USB

Print learner resources (if applicable)

Locate and gather technology and any additional resources

Set up equipment

Write Coder’s Code, WiFi password, and any required login credentials somewhere easily
readable by learners (e.g. whiteboard, chart paper, etc.)

After each lesson…

Clean up your space

Take some time to reflect on the experience:

1. What problems or obstacles did you encounter in this lesson? How did you solve
these problems?

2. What obstacles do you anticipate learners might encounter next time? How can
you prepare to ensure learner success?

Get feedback from your learners—what worked for them and what didn’t?

Teachers Learning Code Digital Toolbox: Quick Start Guide | 15

Lesson Plan
Modifications
When to modify the lesson?

Small adjustments to the content may be necessary if
you notice your group is not able to fill, or complete
the lesson within, the recommended time frame.
You may also want to remix the content to fit within
another subject.

How to modify the lesson

There are several ways you can modify our lesson plans
to meet the unique needs of your particular group.

For advanced learners, consider:
1. Add-ons and Extensions
Add-ons and extensions are additional challenges and tasks
that can be attempted by the learners once the main project
has been completed. These are a great way to challenge
advanced learners and fill extra time. All of our content has
add-ons and/or extensions built into the lesson plan, but feel
free to pose your own challenges, as well!

2. Remixing

Following each Code-Along segment, there is a Work
Session where learners are encouraged to personalize the
main project. We call this ‘remixing’ the project! If your
learners speed through the Code-Along, you can lengthen
the Work Session, encouraging learners to get creative.
Consider using prompts to brainstorm additional ideas as
a group. For example, ask: “How can we make our project
more [fun, challenging, silly, etc]?” or “What is this project
missing?”

For learners that may be falling behind, consider:

1. Pair-Programming
Pair-programming is a software development technique
where two developers work together on a project.
Consider pairing a more advanced learner with a learner
that is falling behind, or pairing two learners at a similar
level. In either scenario, having two learners collaborate on
the project will allow them to move through each task at a
faster pace and will encourage problem-solving within the
pair. See the ‘Facilitation Strategies’ section for more on
pair-programming.

2. Lengthened Workshops

If the allotted time is not enough to complete
the main project, consider lengthening your
sessions (within reason). Be sure to add in
some breaks if you are going to take this
approach! A single workshop could also be
covered over multiple days if you feel it would
be beneficial for your particular group. When
splitting workshops into several days, take
some time at the beginning of subsequent
sessions to review concepts covered
previously. For example, you could review
these concepts yourself, or you could ask the
learners to remind you what they learned or to
demonstrate one thing they learned to the rest
of the class.

Finally, when remixing or customizing content
for your learners, consider the language or
program as the tool through which learners
might demonstrate their learnings in any given
subject. To do this, it is helpful to recognize
that much of Canada Learning Code’s content
(canadalearningcode.ca/lesson-plans) can be
further broken down into three sections: the
subject(s), the project, and the programming
tool or language. For example, in the original
Wildlife Soundscapes lesson plan, learners
explore the boreal forest ecosystem (the topic)
by building a digital soundscape (the project) in
Scratch (the tool).

To customize this content further, swap
one of these three components. You could
remix the project by asking learners to
demonstrate their understanding of a specific
ecosystem by animating a short story in
Scratch. Alternatively, you could remix the
subject of this lesson by having learners
explore Canadian history by creating a digital
soundscape in Scratch that includes the sights
and sounds of a specific decade.

If you treat these lesson plans as a starting
point and aren’t afraid to get creative and have
fun with your remixing, the possibilities are
virtually limitless.

teacherslearningcode.com | 16

Tips for Teaching Code &
Having Fun While Doing It

1. Ensure you are familiar with the tool, but don’t worry about being an
‘expert’—allow your learners to teach one another.

2. Have a clear vision for what you want to accomplish and find a champion
in your school to co-teach with you! It is all about integrated learning.

3. Have a growth mindset or ‘fail-forward’ approach. Spread the belief that
abilities are not dictated by talent alone, but can be developed through
hard work and perseverance.

4. Bring outside experts in. Invite guest speakers and volunteers from the
community to lead mini lessons and be there as extra support.

5. Let your learners and their creativity be your guide—what do they want to
explore more? What do they want to learn?

Teachers Learning Code Digital Toolbox: Quick Start Guide | 17

Facilitation
Strategies
New to facilitation
or nervous about
leading your session?
Consider some
of our favourite
facilitation strategies:

1. Pair-Programming
Pair programming is a software development technique where two developers work
together on one program. At any given moment, one developer is actively writing
the code (the ‘driver’), while the other reviews the code for errors (the ‘navigator’).
The developers will switch roles frequently, getting a chance to flex their skills in
both areas.

There is a lot of research that supports that learners in this age group perform
well together when working with peers on tasks!6,7,8 Learners will move through the
material at a faster pace and will save troubleshooting time by catching errors as
they go. The collaborative nature of pair-programming means they will be exposed
to unique perspectives and will default less to educators for direction when they
encounter a problem. Finally, pair-programming challenges the stereotype of
developing being an antisocial career choice, which can be beneficial for promoting
diversity within the field.

2. Scaffolding
Scaffolding is used to set learners up for success by moving them towards greater
independence in the learning process over time. Scaffolding starts with full
educator instruction to the learner, then to educator-guided instruction with learner
participation, and ends with independent learning for/by the learner.

This model is reflected in our recommended structure of a lesson. For example,
during the introduction, the educator demonstrates the completed project
(instruction to the learner). During the Code-Along, the educator demonstrates
how to use the tool and works with the learners to complete various challenges
(facilitation-guided instruction with learner participation). Finally, during the Work
Session, learners are given time to build independently, having acquired the skills
to add or try new things earlier on in the lesson (independent learning for/by the
learner).

3. Inside-out Approach
The inside-out approach is a facilitation strategy that is useful when we want
learners to look beyond the ‘what’ of a concept and move towards understanding
the ‘how’ and the ‘why’! For example, we don’t want our learners to stop with the
knowledge that loop blocks (like ‘forever’ and ‘repeat’ blocks) make things happen
more than once. We want them to see how the two blocks are different and why
they might use one over the other.

Coding tutorials often show us, step-by-step, how to write a program from top-to-
bottom. When using the inside-out approach, we often start with the innermost
blocks and ask guiding questions to determine what to do next. In this way, the
inside-out approach is important because it ensures learners are not just blindly
following instructions. It teaches the importance of sequence (a fundamental
coding concept!) and creates opportunities for learners to put blocks in the wrong
place, problem solve, and use their creativity and decision-making skills to learn
how and why something works.

teacherslearningcode.com | 18

Facilitation
Strategies

4. Student-Led Discovery
We want learners to be curious. We want them to break things, to try
something new to see if it works, and to be okay with changing direction.
Your learners need to be engaged in the education process and one way
to do that is by asking questions and taking suggestions throughout the
workshop - even if you know said suggestion is not the right answer!

If a learner doesn’t know something, have them ask their elbow partner or
someone at their table, or when in doubt, try it out! There is always the undo
button.

5. Team Teaching
Team teaching is exactly what it sounds like: two or more educators working
together to help the learners work through the content. If you have two
educators running a session, you might decide to collaboratively lead each
session, or decide things run smoother with one educator leading and the
other acting as a mentor.

Regardless of the specifics, team teaching gives your learners different
perspectives on how to solve problems and means they will have more
chances for one-on-one support. It can also be comforting for new
educators to know they are not alone!

6. Learner Mentorship and Co-facilitation
Some of the best educators are not subject matter experts, but are simply
a few steps ahead of their learners! This is because they can often relate
to and teach to the common pitfalls of current learners, having recently
overcome these same issues themselves.

If you have advanced learners in the room, consider asking if they would
be interested in mentoring other learners or joining as your ‘co-facilitator’
for part of the workshop. Mentorship and co-facilitation have the potential
to benefit many individuals within your group. Not only does it foster the
development of leadership skills within your advanced learners, but it will
solidify their understanding of key concepts. For groups with a wide range
of prior experience, having additional mentors can help level the playing field
and reduce the burden on educators.

7. Hands-Off Approach
Whenever possible, we want to keep our hands off the learner devices.
Even though it might be tempting to quickly jump on and fix something
for them, it is important that the learners get into the habit of problem
solving on their own. Let us be clear: this does not mean you should not
help your learners. It simply means we will not do things for them that
they can troubleshoot themselves! For learners that are really stuck, you
can always verbally direct and point them in the direction of the right
answer without physically touching the keyboard and trackpad/mouse
to complete the problem yourself. At the very least, they will have gone
through the motions themselves!

Teachers Learning Code Digital Toolbox: Quick Start Guide | 19

Managing
Behaviour
in the
Presence of
Technology
If you’ve ever seen
youth with technology,
you might be nervous
about the prospect of
directing their focus
away from the screen
and onto you!

Here are our recommendations for maintaining active
engagement during your sessions:

1. Coders’ Code
The Coders’ Code is a collaborative social agreement that highlights
the type of behaviour expected from all participants during the lesson.

Consider creating your own Coders’ Code with your group at the start
of the workshop. Ask your learners what they need from you to have
fun and learn. What do they need from each other? What do you need
from them?

Coders’ Code Example
We will...

• listen to whoever is speaking at the moment.

• show patience and kindness to others in the room.

• ask questions when we are having trouble.

• support others who may be stuck.

• try our best to complete each task!

Agree upon 4-5 expectations with the group and write them
somewhere the learners can see (chart paper, whiteboard, etc.) You
can refer back to the Coders’ Code when behavioural issues arise,
especially if they violate the expectations everyone agreed upon!
Finally, the Coders’ Code is a living document so things can be added
or removed, as needed!

2. Politeness Mode9

You can prevent screen distractions when you are speaking at the front
of the room by using ‘Politeness Mode’. When in ‘Politeness Mode’,
laptops are closed halfway and the monitors of desktop computers are
turned off, so the computer screen is not visible. Consider using this
approach when walking through a new step at the front of the room.
Have learners open their laptops or turn on their screens once it is their
turn to complete a task!

3. Transparency on Timing
Create a predictable environment by writing down the schedule for
each session (including break times!) somewhere visible, or using
timers for periods of independent work, so learners know how much
time they have left for each task. Try using timer-tab.com to project a
countdown that everyone can see!10

teacherslearningcode.com | 20

4. Call-and-Response
If you lose the attention of your group, don’t bother trying to raise your voice! Use the call-and-response
technique where you say something and the group has to respond.

Call-and-Response Examples:

Educator: “To infinity…” Learners: “And beyond!”
Educator: “Stop!” Learners: “Collaborate and listen!”
Educator: “If you can hear me…

• Wave like the queen!”

• Give your partner bunny ears!”

• Raise your left hand... raise your right hand... give yourself a high-five!”

• Snap 1 time. Snap 2 times. Snap 10 times!”

When working with technology, it is helpful to add some accessible physical components to keep learners’
hands up and away from the keyboard when you have something important to demonstrate.

5. Learner-driven Lessons
Avoid giving a lecture or talking at your learners. Ask them questions, guiding them towards figuring it out
and giving you the solutions instead!

Examples:

• Think-Pair-Share
When asking for feedback, give everyone a chance to share their thoughts by using the Think-Pair-Share
technique. First, give learners 30 seconds to think about their own answer to the question. Next, give them
1-2 minutes to share their ideas with 2-3 people nearby. Finally, ask for a few individuals to share what they
discussed with the group. This is less intimidating than asking learners to share with the group right away.

• Voting
Need to make a decision? Have learners vote by giving a thumbs up or thumbs down.

• Demos
Ask learners to come to the front and demonstrate their solutions for the class using the educator’s
computer. Did another learner approach the same problem in a different way? Ask them to show the class
their approach! Did someone figure out something really cool? Have them share with the group!

6. Model Good Behaviour
Some learners will get very frustrated when their computer isn’t working the way they want it to. Try to
reduce this frustration by modeling good behaviour. Show learners how to positively respond to technical
issues and verbalize your thought process while trying to debug problems. See the ‘Debugging Strategies’
section for more information.

7. Student-Led Discovery
While each workshop introduces coding concepts and specific challenges and tasks in the Code-Along
portion, allow learners to explore during the work session, running with their own ideas and questions while
remixing. They will feel more engaged when they have autonomy over their projects. See the ‘Facilitation
Strategies’ section for more information on Student-Led Discovery.

Teachers Learning Code Digital Toolbox: Quick Start Guide | 21

Resources 1. “Exact Instructions Challenge PB&J Classroom Friendly | Josh
Darnit.” YouTube, uploaded by Josh Darnit, 18 Apr. 2017, https://
www.youtube.com/watch?v=FN2RM-CHkuI. Accessed 11 Mar. 2020.

2. Gustafson, Ingrid. “Overheard In the Classroom.” ScratchEd, 20
Jul. 2016, http://scratched.gse.harvard.edu/resources/overheard-
classroom-ingrid-gustafson. Accessed 10 Mar. 2020.

3. Roach, Emily. “Celebrating Mistakes and Embracing Process.”
ScratchEd, 3 Mar. 2017, http://scratched.gse.harvard.edu/stories/
see-inside-classroom-emily-roach. Accessed 10 Mar. 2020.

4. ScratchEd Team. “Debugging in Scratch: Resources and Strategies.”
ScratchEd, 18 Apr. 2017, https://scratched.gse.harvard.edu/
resources/debugging-scratch-resources-and-strategies.html.
Accessed 10 Mar. 2020.

5. Tanguay-Carel, Matt. “Frustrations of Programming & How to Avoid
Them.” Codementor, 30 Nov. 2016, https://www.codementor.io/@
matstc/avoid-frustration-as-programmers-ge54ddszr. Accessed 17
July 2017.

6. Goel, Sanjay, and Vanshi Kathuria. “A Novel Approach for
Collaborative Pair Programming Executive Summary.” Journal of
Information Technology Education, vol. 9, 2010.

7. Lye, Sze Yee, and Joyce Hwee Ling Koh. “Review on Teaching and
Learning of Computational Thinking through Programming: What
Is next for K-12?” Computers in Human Behavior, vol. 41, 2014, pp.
51–61, doi:10.1016/j.chb.2014.09.012.

8. McDowell, Charlie, et al. “Pair Programming Improves
Student Retention, Confidence, and Program Quality.”
Communications of the ACM, vol. 49, Aug. 2006, pp. 90–95,
doi:10.1145/1145287.1145293.

9. Wilson, Greg. Data Scientist and Professional Educator at
RStudio, Inc. LinkedIn. https://www.linkedin.com/in/greg-wilson-
a26510b6/?originalSubdomain=ca. Accessed 13 Mar. 2020.

10. Brillout, Romuald. Timer Tab. https://www.timer-tab.com/.
Accessed 7 Mar. 2020.

DAT E :

DAT E :

GET IN TOUCH

30 St Patrick St
Toronto, ON M5T 3A3

info@canadalearningcode.ca
canadalearningcode.ca

	Structure Bookmarks
	Document
	Article
	Figure
	Figure
	DIGITAL
	DIGITAL
	DIGITAL
	TOOLBOX:

	Quick Start Guide
	Quick Start Guide
	Quick Start Guide

	Figure
	Table of Contents
	Table of Contents
	Table of Contents

	WELCOME
	WELCOME
	WELCOME

	3
	3
	Introduction and Learning Objectives

	CODING FOR BEGINNERS
	CODING FOR BEGINNERS
	CODING FOR BEGINNERS

	4
	4
	What is code?

	5
	5
	Why teach computer science and coding?

	6
	6
	Computational Thinking

	7
	7
	Coding Concepts and Terminology

	10
	10
	Debugging Strategies: Prompts & Checklists

	LESSON PLANNING
	LESSON PLANNING

	12
	12
	 Minimum Requirements

	13
	13
	 Lesson Structure

	14
	14
	 Educator Preparation Checklists

	15
	15
	 Lesson Plan Modifications

	APPENDIX: TEACHING WITH TECHNOLOGY
	APPENDIX: TEACHING WITH TECHNOLOGY
	APPENDIX: TEACHING WITH TECHNOLOGY

	17
	17
	Tips for Teaching Code and Having Fun while Doing It

	19
	19
	Facilitation Strategies

	20
	20
	Managing Behaviour in the Presence of Technology

	For more great lesson plans,
	For more great lesson plans,
	For more great lesson plans,
	check out our website:

	canadalearningcode.ca/
	canadalearningcode.ca/
	
	lesson-plans

	Welcome to the Digital Toolbox:
	Welcome to the Digital Toolbox:
	Welcome to the Digital Toolbox:

	Quick Start Guide!
	Quick Start Guide!

	What is the Digital Toolbox series?
	The Teachers Learning Code Digital Toolbox is a series of guides designed to give educators the general skills, knowledge, and confidence to introduce technology and coding concepts to their K-12 learners.
	In this series, we share resources to familiarize yourself with, tips and tricks for teaching digital skills, and lesson plans to empower and teach the future generation of technologists across Canada.
	Quick Start Guide
	The guide you are reading right now is our
	The guide you are reading right now is our
	Quick Start guide and includes high-level
	information on how to bring computer science
	and coding into your classroom. This guide
	is designed to be used in conjunction with
	our more specific ‘how-to’ guides, which
	include not only the basics of our favourite
	technologies and coding tools, but also lesson
	plans ready-made for classroom delivery!

	Who are the Digital Toolbox guides for?
	The Digital Toolbox guides were designed
	The Digital Toolbox guides were designed
	specifically with K-12 educators in mind, but
	can be used and adapted by non-traditional
	educators, such as program coordinators at
	community centres, homeschooling parents,
	Girl Guide troop leaders, etc., as well.

	What will the Digital Toolbox accomplish?
	Through computer science education, we
	Through computer science education, we
	want to inspire all people in Canada to
	become empowered digital citizens who can
	understand, participate, and shape our country
	as creators and innovators of technology.

	Learning Objectives
	After reading the Teachers Learning Code Digital
	After reading the Teachers Learning Code Digital
	Toolbox: Quick Start Guide, educators will be able to…

	•
	•
	•
	•

	Identify the skills and competencies covered by
	Identify the skills and competencies covered by
	teaching computer science and coding

	•
	•
	•

	Define foundational coding concepts and and
	Define foundational coding concepts and and
	explain them using relatable analogies

	•
	•
	•

	Identify and modify (or “remix”) elements of Canada
	Identify and modify (or “remix”) elements of Canada
	Learning Code lesson plans

	•
	•
	•

	Apply 4 strategies for modifying the curriculum to
	Apply 4 strategies for modifying the curriculum to
	meet unique learner needs

	•
	•
	•

	Support learners through the process of debugging
	Support learners through the process of debugging
	and troubleshooting technological projects by using
	the debugging prompts and checklist

	•
	•
	•

	Apply 7 strategies for the facilitation of technology-
	Apply 7 strategies for the facilitation of technology-
	based workshops

	Who built the Digital Toolbox guides?
	Who built the Digital Toolbox guides?

	The Digital Toolbox series was developed by Teachers
	The Digital Toolbox series was developed by Teachers
	Learning Code under the national charity Canada
	Learning Code. The lesson plans have been developed
	in partnership with educators and industry-leading
	experts as indicated.

	Figure
	Figure
	Coding for Beginners
	Coding for Beginners
	Coding for Beginners

	What is Code?
	The simplest explanation for code is that it is a set of instructions that are given to a computer in order to execute a certain task. When we put these instructions together in a certain order, we call this an algorithm (a set of step-by-step instructions to follow in order to solve a problem).
	Computers take direction extremely literally, which means that any instructions in your
	Computers take direction extremely literally, which means that any instructions in your
	algorithm should be precise and specific. For example, when reading a peanut butter
	and jelly sandwich recipe (an algorithm in itself!), a human would likely understand that
	“Put the jam on the bread” is the direction to spread some jam on a slice of bread. A
	computer, however, might interpret this entirely differently. Should the robot put the jar
	of jam on top of the bread bag? This might seem silly to you, but you will soon see how
	literally a computer takes direction. A clearer set of instructions for our robot might be:

	1.
	1.
	1.
	1.

	Turn the lid on the jam counterclockwise until it is completely loosened
	Turn the lid on the jam counterclockwise until it is completely loosened

	2.
	2.
	2.

	Lift the lid off the jar of jam
	Lift the lid off the jar of jam

	3.
	3.
	3.

	Place the lid beside the jar of jam
	Place the lid beside the jar of jam

	… and so on. Watch a great demonstration of this concept at
	… and so on. Watch a great demonstration of this concept at
	bit.ly/pbandj-challenge
	.
	1

	Code is extremely versatile; we can use it to control computers/robots, build webpages,
	Code is extremely versatile; we can use it to control computers/robots, build webpages,
	create video games, analyze large datasets, and more! The possibilities are endless.
	While we use different coding languages to complete different tasks (e.g. HTML & CSS
	for web-building, R for data analysis, Scratch for game building, MakeCode and python
	for micro:bit, and Javascript for flying robots!), each of these languages is really just a
	different way of communicating your instructions, or your algorithm, to the computer.

	Why Teach Computer
	Why Teach Computer
	Science and Coding?

	In addition to teaching important skills
	In addition to teaching important skills
	and competencies, Computer Science
	education will also equip learners with the
	capacities and dispositions required to meet
	the needs of their times.

	Discovery:
	Discovery:
	 Computer Science education will
	inspire learners to approach problems with
	curiosity and a sense of discovery. It will
	encourage learners to try new things, approach
	tasks with a growth mindset, and iterate as they
	master new skills.

	Critical Thinking:
	Critical Thinking:
	 Having a better understanding
	of how computers operate will equip learners to
	more critically engage the social, legal, ethical, and
	political implications of technology.

	Team Work:
	Team Work:
	 Computer Science encourages
	learners to work together and develop projects,
	promoting effective communication, project
	management skills, and empathy for the
	perspective of others. It also encourages learners
	to constructively give and receive feedback and
	fosters a willingness to help and share with others.

	Citizenship:
	Citizenship:
	 Computer Science education will help
	learners understand the ways in which technology
	impacts society, helping them to become
	technological stewards who will harness the power
	of technology to improve the world around them.

	Resilience:
	Resilience:
	 Creating digital artifacts will help
	learners to become more comfortable with
	trying new things, making mistakes, and learning
	through experience. By stressing the importance
	of continuous and unexpected learning, learners
	will ultimately become more resilient and see
	opportunity in failure.

	Creativity:
	Creativity:
	 Computer Science will encourage
	learners to explore their creativity, think outside
	the box, and develop innovative solutions to
	address issues that affect them, their community,
	and the world.

	Computational Thinking:
	Computational Thinking:
	 Computer Science
	will help learners employ computational thinking
	strategies to problems within and outside the
	digital world. See the ‘Computational Thinking’
	section for more information.

	Fundamental Programming Concepts:
	Fundamental Programming Concepts:
	 Computer
	Science education teaches the programming
	concepts that are the shared foundation of
	hundreds of unique programming languages.
	When learners understand these key concepts,
	they are able to switch languages more seamlessly.
	See the ‘Coding Concepts and Key Terminology’
	section for more information.

	Figure
	Figure
	Figure
	Figure
	Figure
	Computational Thinking
	Computational Thinking
	Computational Thinking

	Computational thinking involves the thought processes and strategies involved in formulating
	Computational thinking involves the thought processes and strategies involved in formulating
	a problem and articulating the solutions in such a way that a computer (or another human)
	could action on. It involves breaking big problems into smaller parts, and describing specific
	steps to overcome these smaller challenges. Computational thinking concepts aren’t unique to
	coding—you’ll notice they are the principles many people use in their day-to-day lives to solve
	problems of all sorts.
	

	Computational thinking involves the following key steps:
	Computational thinking involves the following key steps:

	I. Decomposition
	Decomposition involves breaking down large problems into smaller, more manageable, steps,
	Decomposition involves breaking down large problems into smaller, more manageable, steps,
	just as we might break down a book report into different sections.

	II. Pattern recognition
	Pattern recognition involves identifying the shared characteristics of these smaller problems to
	Pattern recognition involves identifying the shared characteristics of these smaller problems to
	help us make predictions, create rules, and solve problems more generally.

	III. Abstraction
	Abstraction involves isolating differences between our smaller problems in order to make one
	Abstraction involves isolating differences between our smaller problems in order to make one
	solution work for multiple problems. In this way, abstraction helps us decide what’s important
	and what’s not. It helps manage complexity, like when we decide what information is needed
	to help solve a math equation or word problem.

	IV. Algorithms
	Creating an algorithm means creating a set of step-by-step instructions to follow in order to
	Creating an algorithm means creating a set of step-by-step instructions to follow in order to
	solve the identified problem(s). Algorithms are common in our everyday lives — a lesson plan
	is an algorithm for a class, while a recipe is an algorithm for making our favourite dish. Writing
	out step-by-step instructions in plain English is what we call ‘pseudo code’.

	Coding Concepts and Terminology
	There are hundreds of computer programming languages, and although they may look nothing
	There are hundreds of computer programming languages, and although they may look nothing
	alike, they are built on a shared foundation of key concepts.

	As you will see, many of these coding concepts come up in daily life and aren’t as daunting
	As you will see, many of these coding concepts come up in daily life and aren’t as daunting
	as you might think. Consider using the real-world examples provided when explaining difficult
	concepts to your learners!

	Coding
	Coding
	Coding
	Concepts and
	Terminology

	There are hundreds of computer programming languages, and although they may look
	There are hundreds of computer programming languages, and although they may look
	nothing alike, they are built on a shared foundation of key concepts.

	As you will see, many of these coding concepts come up in daily life and aren’t as
	As you will see, many of these coding concepts come up in daily life and aren’t as
	daunting as you might think. Consider using the real-world examples provided when
	explaining difficult concepts to your learners!

	Concept/Term
	Definition
	Real-World Example or Analogy
	Algorithm
	Algorithm

	A set of step-by-step instructions to
	A set of step-by-step instructions to
	follow in order to solve a problem

	We all follow a similar algorithm when brushing our teeth.
	We all follow a similar algorithm when brushing our teeth.
	We put toothpaste on our toothbrushes, scrub our teeth with
	said toothbrush, and then rinse our mouths.

	Arrays
	Arrays

	A special variable that can store
	A special variable that can store
	more than one value at a time; items
	are ordered by a number so that we
	can access them later

	An array is like a photo album for your last family trip. The
	An array is like a photo album for your last family trip. The
	album allows us to store lots of related memories (photos!)
	in one place. When we want to look back at these specific
	memories, we just pull up the photo album.

	Boolean Logic
	Boolean Logic

	‘and’, ‘or’, ‘not’ are examples of
	‘and’, ‘or’, ‘not’ are examples of
	boolean operators; values that are
	either true or false

	We could use boolean logic to sort cats based on their fur
	We could use boolean logic to sort cats based on their fur
	colour.

	Group 1: Cats that are black AND white
	Group 1: Cats that are black AND white

	Group 2: Cats that are fully black OR white
	Group 2: Cats that are fully black OR white

	Group 3: Cats that are only black, NOT white
	Group 3: Cats that are only black, NOT white

	Bug
	Bug

	An error in a program that
	An error in a program that
	prevents the program from
	running as expected

	When you turn on your hose to fill your pool, you expect that
	When you turn on your hose to fill your pool, you expect that
	water will come out of its opening. Kinks interrupt the water
	flow and prevent the hose from working as expected. In this
	case, the kink is a bug!

	Coding Language
	Coding Language

	Means through which humans
	Means through which humans
	communicate with computers (e.g.
	HTML & CSS, Python, Scratch,
	JavaScript, etc.)

	We all speak different languages to each other based on what
	We all speak different languages to each other based on what
	we understand. In this guide, we are using English, but you and
	your family members might speak a different language. Just
	like we have different languages to speak to one another, the
	computer has different coding languages to use or interpret.

	Command
	Command

	An instruction for the computer
	An instruction for the computer

	Just like we ask trained dogs to complete tricks or commands,
	Just like we ask trained dogs to complete tricks or commands,
	we can command computers!

	Conditional
	Conditional
	statements

	Allow computers to make decisions
	Allow computers to make decisions
	based on certain conditions
	being met; if/else statements are
	commonly used in conditional
	statements

	We use conditional statements when we make decisions
	We use conditional statements when we make decisions
	about our lives all the time! For example:

	If it is raining, then I will use my umbrella. If it’s not raining, I
	If it is raining, then I will use my umbrella. If it’s not raining, I
	won’t!

	Debugging
	Debugging

	The act of finding problems or ‘bugs’
	The act of finding problems or ‘bugs’
	in our code and solving them

	In the hose example, the debugging process would involve 1)
	In the hose example, the debugging process would involve 1)
	looking along the entire length of the broken hose to identify
	any problems (a hole, a kink), and 2) taping the hole or
	straightening the kink!

	Events
	Events

	When one act triggers another to
	When one act triggers another to
	occur

	When the clock strikes 12 PM, we eat lunch! At 3 PM, we leave
	When the clock strikes 12 PM, we eat lunch! At 3 PM, we leave
	school!

	Function
	Function

	A named section of a program that
	A named section of a program that
	performs a specific task; can be
	used over and over again

	Think of a function as the chorus of a song. When you are
	Think of a function as the chorus of a song. When you are
	writing a song, you only have to compose the chorus once
	because it is repetitive. After composing and labeling it as
	the chorus, you can write “Chorus” anywhere you want it to
	be repeated within the song, and people will know what you
	mean! This saves time.

	Index
	Index

	The specific location of an item
	The specific location of an item
	in an array; the first item in an
	array has an index of 0

	When your teacher takes attendance, they are reading
	When your teacher takes attendance, they are reading
	from a list (or an array) of all the students in your class.
	Depending on your last name, you will appear at a certain
	place (or index!) on this list.

	Input
	Input

	Information the computer senses
	Information the computer senses
	from its environment or information
	the user supplies to the computer

	When we want a certain bag of chips from a vending
	When we want a certain bag of chips from a vending
	machine, we press a letter and number (e.g. A5). This is
	known as the input.

	Loops
	Loops

	Allows us to run the same
	Allows us to run the same
	sequence multiple times, as long
	as a certain condition is met

	As long as it is still dirty, I will continue to wash my dish. I
	As long as it is still dirty, I will continue to wash my dish. I
	will only stop when the dish is completely clean!

	Some loops can go on forever! A real life example of this is
	Some loops can go on forever! A real life example of this is
	time. Time goes on... forever! It never stops.

	Modularizing
	Modularizing

	Exploring connections between the
	Exploring connections between the
	whole and its parts

	In modular code, the larger program is divided into smaller
	In modular code, the larger program is divided into smaller
	parts for easier management and readability. Each of these
	smaller parts has its own role within the larger program!

	Think of this as a team working on a school project. If one
	Think of this as a team working on a school project. If one
	person tried to complete the entire project, it would be
	much more difficult to manage. Dividing up the tasks makes
	it easier for everyone to function and for the project to be
	completed more efficiently (as long as the team members
	are willing to communicate!)

	We also use modularization when solving math equations
	We also use modularization when solving math equations
	like =4x7+5÷2. In order to solve this problem, we break it
	into smaller chunks like (4x7) and then (5÷2).

	Operators
	Operators

	Mathematical and logical
	Mathematical and logical
	expressions

	Relational operators are used for
	Relational operators are used for
	comparison (e.g. == (equals), !=
	(does not equal), >= (greater than
	or equal to), etc.)

	Arithmetic operators are used for
	Arithmetic operators are used for
	calculations (e.g. + (addition), -
	(subtraction), etc.)

	Symbols dictate our actions all the time! When we see
	Symbols dictate our actions all the time! When we see
	a stop sign, we stop. We know how to leave buildings
	by looking for the EXIT sign. We know what the ‘+’ or ‘-’
	symbols mean when we are calculating the answer to a
	math problem, and our
	computers use these same
	(or
	very similar!) symbols.

	Output
	Output

	Information the computer supplies
	Information the computer supplies
	to its user

	After we press a letter and number (e.g. A5) in our vending
	After we press a letter and number (e.g. A5) in our vending
	machine example, the machine releases our treat as the
	output.

	Parallelism
	Parallelism

	Making things happen at the same
	Making things happen at the same
	time

	Can you rub your belly and tap your head at the same
	Can you rub your belly and tap your head at the same
	time? This is a real-world example of parallelism where our
	brains are instructing our arms to do 2 separate things at
	the same time!

	Program
	Program

	An algorithm that has been coded
	An algorithm that has been coded
	to be run by a machine; written in a
	coding language (synonymous with
	‘code’ and ‘software’)

	Think of a program as a secret family recipe that was passed
	Think of a program as a secret family recipe that was passed
	down from your grandparents. The recipe is the algorithm
	and the fact that it was written down to be prepared by
	someone else makes it similar to a program (Keep in mind
	that programs are only run by computers, not people!)

	Remixing
	Remixing

	The process of taking an existing
	The process of taking an existing
	project or idea and making it new
	by changing or adding to it

	DJs remix popular songs by changing the tempo, adding
	DJs remix popular songs by changing the tempo, adding
	additional sounds, sampling from other songs, etc.

	Sequence
	Sequence

	An ordered series of steps for a
	An ordered series of steps for a
	task; computers read and perform
	tasks in order from top to bottom

	Think back to our algorithm example. Have you ever
	Think back to our algorithm example. Have you ever
	tried to brush your teeth by rinsing your mouth first
	and scrubbing your teeth with toothpaste second? The
	sequence or order of the commands matters!

	State
	State

	State in a programming sense is
	State in a programming sense is
	just the same as state in a non-
	programming sense (ie. the TV is
	on or off). Variables have states,
	values don’t. For example, 42 is 42
	and there’s nothing you can change
	about it

	The state of a TV or light switch can be on or off!
	The state of a TV or light switch can be on or off!

	String
	String

	A type of data that represents text
	A type of data that represents text

	Any line of text can be a string. A word, a sentence, a line
	Any line of text can be a string. A word, a sentence, a line
	of gibberish, etc.

	Syntax
	Syntax

	A set of rules for physically writing
	A set of rules for physically writing
	the coding language such that
	computers are able to understand;
	Scratch and the MakeCode editors
	blockly structure removes the need
	for syntax

	Different human languages (like English, Spanish, and
	Different human languages (like English, Spanish, and
	French) have different vocabularies and figures of speech,
	as well as spelling and grammar rules that we must follow.
	When we don’t follow these rules, other people may find it
	difficult to understand what we mean. Using proper syntax
	for coding languages ensures the computer is able to
	understand our commands!

	Variable
	Variable

	Allow us to store a single piece of
	Allow us to store a single piece of
	information

	We can think of a variable as our piggy bank or wallet,
	We can think of a variable as our piggy bank or wallet,
	which stores our money. The amount of money we have
	can change depending on our actions. Did we pay rent
	or go on a shopping spree? If we want to know how
	much money we have at any given time, we just need to
	look inside our piggy bank or wallet.

	Coding Concepts and Terminology
	Coding Concepts and Terminology
	Coding Concepts and Terminology

	Concept/Term
	Concept/Term
	Definition
	Real-World Example or Analogy

	Coding Concepts and Terminology
	Coding Concepts and Terminology
	Coding Concepts and Terminology

	Concept/Term
	Concept/Term
	Definition
	Real-World Example or Analogy

	Debugging Strategies
	Debugging Strategies
	Debugging Strategies

	It can be tempting to jump in and solve your learners’ problems when they get frustrated, but troubleshooting
	It can be tempting to jump in and solve your learners’ problems when they get frustrated, but troubleshooting
	and making mistakes is an important part of the learning process.

	When something goes wrong with a project, be calm and use it as a teaching opportunity to show your learners
	When something goes wrong with a project, be calm and use it as a teaching opportunity to show your learners
	how to debug technology and think through problems. Set expectations! Let learners know that encountering a
	block of code that doesn’t work as expected is simply a part of programming. Debugging is coding!

	Prompts
	Consider using these prompts to encourage and motivate learners who might be having trouble getting started
	Consider using these prompts to encourage and motivate learners who might be having trouble getting started
	with the debugging process
	2
	:

	“Let’s break this down. What should we do first?”
	“Let’s break this down. What should we do first?”

	“If I’m the user of this project, how am I supposed to be interacting with it?”
	“If I’m the user of this project, how am I supposed to be interacting with it?”

	“If you read the code you’re building like you are reading a sentence, what do you notice? Is anything
	“If you read the code you’re building like you are reading a sentence, what do you notice? Is anything
	missing?”

	“What are you trying to do? What do you think isn’t working? What have you tried already?”
	“What are you trying to do? What do you think isn’t working? What have you tried already?”

	“Go [here]. Do you see anything there that might be useful for this problem?”
	“Go [here]. Do you see anything there that might be useful for this problem?”

	Checklist
	Ask your learners to use the following checklist when debugging
	Ask your learners to use the following checklist when debugging
	3,4,5
	:

	Have you tried...
	Have you tried...

	Reading your code aloud?
	Reading your code aloud?

	Reading your code aloud, in a similar way
	Reading your code aloud, in a similar way
	to how you would read a sentence, can be
	helpful for identifying gaps in logic or missing
	components.

	Asking a friend to review your problem? Or
	Asking a friend to review your problem? Or
	working on the problem together?

	Sometimes a fresh set of eyes is all it takes.
	Sometimes a fresh set of eyes is all it takes.

	Isolating and testing your code?
	Isolating and testing your code?

	Revert back to stable code that you know
	Revert back to stable code that you know
	works. Then, try testing out the additional lines
	of your code by removing one command at a
	time. Add the commands back one-by-one until
	you replicate your problem.

	Thinking like a computer?
	Thinking like a computer?

	Are your steps specific enough? Remember,
	Are your steps specific enough? Remember,
	computers aren’t very smart. We have to tell
	them exactly what to do.

	Looking it up?
	Looking it up?

	Google is your friend! If there is something wrong
	Google is your friend! If there is something wrong
	with your WiFi, laptop, keyboard, code, etc., try
	typing the issue into Google and see if there’s a
	solution! There often will be!

	If Google isn’t useful, all digital tools usually have
	If Google isn’t useful, all digital tools usually have
	a ‘Help’ or ‘Reference’ section you can explore.

	Trying something new out?
	Trying something new out?

	When in doubt, try it out! There is always the
	When in doubt, try it out! There is always the
	undo and redo button!

	Taking a break?
	Taking a break?

	It can be difficult to think clearly when we are
	It can be difficult to think clearly when we are
	frustrated.

	Resetting the machine?
	Resetting the machine?

	Though resetting may not be an ideal solution
	Though resetting may not be an ideal solution
	when you are coding, if you are working with
	unresponsive hardware like robotics, this might
	be the solution.

	Lesson Planning
	Lesson Planning
	Lesson Planning

	There are many ways to bring coding to your
	There are many ways to bring coding to your
	youth! You could start an after-school coding
	club or incorporate coding into pre-existing
	classes. For example, instead of having your
	learners write a report on a historical figure or
	incident, you might ask them to create a website
	instead! The possibilities are endless!

	
	Minimum Requirements

	You will need:
	You will need:

	An Educator
	An Educator

	To supervise learners and facilitate sessions and coding challenges.
	To supervise learners and facilitate sessions and coding challenges.

	Volunteer Mentors (optional, but recommended)
	Volunteer Mentors (optional, but recommended)

	To support learners with their questions as the educator leads the session. Consider asking more
	To support learners with their questions as the educator leads the session. Consider asking more
	advanced learners to play this role.

	Content
	Content

	Consider using the lesson plans in our Digital Toolbox series or the lessons on our website at
	Consider using the lesson plans in our Digital Toolbox series or the lessons on our website at
	https://www.canadalearningcode.ca/lesson-plans/
	.

	Access to Hardware
	Access to Hardware

	Laptop or desktop computers (at least 1 per pair of learners)
	Laptop or desktop computers (at least 1 per pair of learners)

	Extension cords and power bars
	Extension cords and power bars

	Projector, projector screen, and appropriate dongles to connect (or another way to display
	Projector, projector screen, and appropriate dongles to connect (or another way to display
	your screen to learners)

	Hardware (as specified in lesson plan or ‘how-to’ guide)
	Hardware (as specified in lesson plan or ‘how-to’ guide)

	WiFi connection (optional, but recommended)
	WiFi connection (optional, but recommended)

	Some tools can be used without an internet connection, while it is a strict requirement for others.
	Some tools can be used without an internet connection, while it is a strict requirement for others.

	How should our room be set up?
	How should our room be set up?

	Each room should have 1 educator computer and a projector/screen to display the slides to
	Each room should have 1 educator computer and a projector/screen to display the slides to
	your group. Laptops for learners should be set up such that the educator’s screen is visible
	from any seat.

	Figure
	Figure
	Figure
	Suggested
	Suggested
	Suggested
	Structure
	of a Lesson

	We recommend that
	We recommend that
	each lesson include
	these main sections:

	1.
	1.
	1.
	1.

	Introduction
	Introduction

	The introduction sets the stage for the lesson. Start the session
	The introduction sets the stage for the lesson. Start the session
	with an icebreaker and a review of classroom expectations. At
	Canada Learning Code, we refer to these expectations as our
	Coders’ Code (see ‘Managing Behaviour’ section for additional
	details on this concept). After this, pose essential questions
	related to the topic of the workshop and provide any background
	information necessary. Wrap up this section by showing the
	learners an example of the main project they will be building!

	2.
	2.
	2.
	2.

	Code-Along
	Code-Along

	During the Code-Along, you should introduce or review the
	During the Code-Along, you should introduce or review the
	main tool being used through an exploratory learning activity.
	Give learners a chance to play around with and test out the tool,
	providing a bit of structure through ‘challenges’. Demonstrate
	problem-solving and resourcefulness while solutioning by asking
	(rather than telling) learners where to find things, verbalizing your
	thought process from A to B, and redirecting questions towards
	other learners, or towards the reference.

	3.
	3.
	3.
	3.

	Work Session
	Work Session

	During the Work Session, start by giving the learners the chance
	During the Work Session, start by giving the learners the chance
	to work with you to build the main project by answering questions
	and completing challenges with your guidance. At this point, the
	Work Session may look similar to the Code-Along. As they get
	comfortable, provide learners with more independent time for
	finishing the project and adding customizations (remixing!) on their
	own. Educators should walk around to support learners as they
	build. If learners complete the project, challenge them with the add-
	ons or extensions found in the lesson plan.

	4.
	4.
	4.
	4.

	Wrap-up
	Wrap-up

	As you wrap-up the lesson, give learners the chance to see what
	As you wrap-up the lesson, give learners the chance to see what
	their friends have created! You might have learners present their
	project at the front of the room, or lead a Gallery Walk, where
	learners open their laptops, tuck in their chairs, and walk around
	the room to explore each other’s final projects. Before you send
	learners off, be sure to review any coding concepts covered, as well
	as learning outcomes achieved!

	Figure
	Educator Preparation Checklists
	Educator Preparation Checklists
	Educator Preparation Checklists

	Before each lesson...
	Prep Time: 2 hours
	Prep Time: 2 hours

	Review the lesson plan and any supporting materials (slides, example project, solution
	Review the lesson plan and any supporting materials (slides, example project, solution
	sheet, handouts, etc.)

	Review relevant coding/programming concepts and ensure you are confident
	Review relevant coding/programming concepts and ensure you are confident
	describing them to your group

	Code and/or build (if applicable) the main project, ensuring you are comfortable
	Code and/or build (if applicable) the main project, ensuring you are comfortable
	with all outlined steps (consider sharing this project with your group as an
	example!)

	Run through the lesson to minimize the risk of tech issues
	Run through the lesson to minimize the risk of tech issues

	Create online accounts (if applicable)
	Create online accounts (if applicable)

	Prepare for WiFi failure
	Prepare for WiFi failure

	Print a copy of the lesson plan and solution sheet
	Print a copy of the lesson plan and solution sheet

	Download offline software and transfer the files to a USB
	Download offline software and transfer the files to a USB

	Print learner resources (if applicable)
	Print learner resources (if applicable)

	Locate and gather technology and any additional resources
	Locate and gather technology and any additional resources

	Set up equipment
	Set up equipment

	Write Coder’s Code, WiFi password, and any required login credentials somewhere easily
	Write Coder’s Code, WiFi password, and any required login credentials somewhere easily
	readable by learners (e.g. whiteboard, chart paper, etc.
)

	After each lesson…
	Clean up your space
	Clean up your space

	Take some time to reflect on the experience:
	Take some time to reflect on the experience:

	1.
	1.
	1.
	1.

	What problems or obstacles did you encounter in this lesson? How did you solve
	What problems or obstacles did you encounter in this lesson? How did you solve
	these problems?

	2.
	2.
	2.

	What obstacles do you anticipate learners might encounter next time? How can
	What obstacles do you anticipate learners might encounter next time? How can
	you prepare to ensure learner success?

	Get feedback from your learners—what worked for them and what didn’
	Get feedback from your learners—what worked for them and what didn’
	t?

	Lesson Plan
	Lesson Plan
	Lesson Plan
	Modifications

	When to modify the lesson?
	Small adjustments to the content may be necessary if
	Small adjustments to the content may be necessary if
	you notice your group is not able to fill, or complete
	the lesson within, the recommended time frame.
	You may also want to remix the content to fit within
	another subject.

	How to modify the lesson
	There are several ways you can modify our lesson plans
	There are several ways you can modify our lesson plans
	to meet the unique needs of your particular group.

	For advanced learners, consider:
	1.
	1.
	1.
	1.

	Add-ons and Extensions
	Add-ons and Extensions

	Add-ons and extensions are additional challenges and tasks
	Add-ons and extensions are additional challenges and tasks
	that can be attempted by the learners once the main project
	has been completed. These are a great way to challenge
	advanced learners and fill extra time. All of our content has
	add-ons and/or extensions built into the lesson plan, but feel
	free to pose your own challenges, as well!

	2.
	2.
	2.
	2.

	Remixing
	Remixing

	Following each Code-Along segment, there is a Work
	Following each Code-Along segment, there is a Work
	Session where learners are encouraged to personalize the
	main project. We call this ‘remixing’ the project! If your
	learners speed through the Code-Along, you can lengthen
	the Work Session, encouraging learners to get creative.
	Consider using prompts to brainstorm additional ideas as
	a group. For example, ask: “How can we make our project
	more [fun, challenging, silly, etc]?” or “What is this project
	missing?”

	For learners that may be falling behind, consider:
	1.
	1.
	1.
	1.

	Pair-Programming
	Pair-Programming

	Pair-programming is a software development technique
	Pair-programming is a software development technique
	where two developers work together on a project.
	Consider pairing a more advanced learner with a learner
	that is falling behind, or pairing two learners at a similar
	level. In either scenario, having two learners collaborate on
	the project will allow them to move through each task at a
	faster pace and will encourage problem-solving within the
	pair. See the ‘Facilitation Strategies’ section for more on
	pair-programming.

	2.
	2.
	2.
	2.

	Lengthened Workshops
	Lengthened Workshops

	If the allotted time is not enough to complete
	If the allotted time is not enough to complete
	the main project, consider lengthening your
	sessions (within reason). Be sure to add in
	some breaks if you are going to take this
	approach! A single workshop could also be
	covered over multiple days if you feel it would
	be beneficial for your particular group. When
	splitting workshops into several days, take
	some time at the beginning of subsequent
	sessions to review concepts covered
	previously. For example, you could review
	these concepts yourself, or you could ask the
	learners to remind you what they learned or to
	demonstrate one thing they learned to the rest
	of the class.

	Finally, when remixing or customizing content
	Finally, when remixing or customizing content
	for your learners, consider the language or
	program as the tool through which learners
	might demonstrate their learnings in any given
	subject. To do this, it is helpful to recognize
	that much of Canada Learning Code’s content
	(
	canadalearningcode.ca/lesson-plans
) can be
	further broken down into three sections: the
	subject(s), the project, and the programming
	tool or language. For example, in the original
	Wildlife Soundscapes lesson plan, learners
	explore the boreal forest ecosystem (the topic)
	by building a digital soundscape (the project) in
	Scratch (the tool).

	To customize this content further, swap
	To customize this content further, swap
	one of these three components. You could
	remix the project by asking learners to
	demonstrate their understanding of a specific
	ecosystem by animating a short story in
	Scratch. Alternatively, you could remix the
	subject of this lesson by having learners
	explore Canadian history by creating a digital
	soundscape in Scratch that includes the sights
	and sounds of a specific decade.

	If you treat these lesson plans as a starting
	If you treat these lesson plans as a starting
	point and aren’t afraid to get creative and have
	fun with your remixing, the possibilities are
	virtually limitless.

	Figure
	Tips for Teaching Code &
	Tips for Teaching Code &
	Tips for Teaching Code &
	Having Fun While Doing It

	1.
	1.
	1.
	1.

	Ensure you are familiar with the tool, but don’t worry about being an
	Ensure you are familiar with the tool, but don’t worry about being an
	‘expert’—allow your learners to teach one another.

	2.
	2.
	2.

	Have a clear vision for what you want to accomplish and find a champion
	Have a clear vision for what you want to accomplish and find a champion
	in your school to co-teach with you! It is all about integrated learning.

	3.
	3.
	3.

	Have a growth mindset or ‘fail-forward’ approach. Spread the belief that
	Have a growth mindset or ‘fail-forward’ approach. Spread the belief that
	abilities are not dictated by talent alone, but can be developed through
	hard work and perseverance.

	4.
	4.
	4.

	Bring outside experts in. Invite guest speakers and volunteers from the
	Bring outside experts in. Invite guest speakers and volunteers from the
	community to lead mini lessons and be there as extra support.

	5.
	5.
	5.

	Let your learners and their creativity be your guide—what do they want to
	Let your learners and their creativity be your guide—what do they want to
	explore more? What do they want to learn?

	Figure
	Figure
	Figure
	Facilitation
	Facilitation
	Facilitation
	Strategies

	New to facilitation
	New to facilitation
	or nervous about
	leading your session?
	Consider some
	of our favourite
	facilitation strategies:

	
	

	1.
	1.
	1.
	1.

	Pair-Programming
	Pair-Programming

	Pair programming is a software development technique where two developers work
	Pair programming is a software development technique where two developers work
	together on one program. At any given moment, one developer is actively writing
	the code (the ‘driver’), while the other reviews the code for errors (the ‘navigator’).
	The developers will switch roles frequently, getting a chance to flex their skills in
	both areas.

	There is a lot of research that supports that learners in this age group perform
	There is a lot of research that supports that learners in this age group perform
	well together when working with peers on tasks!
	6,7,8
	 Learners will move through the
	material at a faster pace and will save troubleshooting time by catching errors as
	they go. The collaborative nature of pair-programming means they will be exposed
	to unique perspectives and will default less to educators for direction when they
	encounter a problem. Finally, pair-programming challenges the stereotype of
	developing being an antisocial career choice, which can be beneficial for promoting
	diversity within the field.

	2.
	2.
	2.
	2.

	Scaffolding
	Scaffolding

	Scaffolding is used to set learners up for success by moving them towards greater
	Scaffolding is used to set learners up for success by moving them towards greater
	independence in the learning process over time. Scaffolding starts with full
	educator instruction to the learner, then to educator-guided instruction
	with
	 learner
	participation, and ends with independent learning
	for/by
	 the learner.

	This model is reflected in our recommended structure of a lesson. For example,
	This model is reflected in our recommended structure of a lesson. For example,
	during the introduction, the educator demonstrates the completed project
	(instruction to the learner). During the Code-Along, the educator demonstrates
	how to use the tool and works with the learners to complete various challenges
	(facilitation-guided instruction with learner participation). Finally, during the Work
	Session, learners are given time to build independently, having acquired the skills
	to add or try new things earlier on in the lesson (independent learning
	for/by
	 the
	learner).

	3.
	3.
	3.
	3.

	Inside-out Approach
	Inside-out Approach

	The inside-out approach is a facilitation strategy that is useful when we want
	The inside-out approach is a facilitation strategy that is useful when we want
	learners to look beyond the ‘what’ of a concept and move towards understanding
	the ‘how’ and the ‘why’! For example, we don’t want our learners to stop with the
	knowledge that loop blocks (like ‘forever’ and ‘repeat’ blocks) make things happen
	more than once. We want them to see how the two blocks are different and why
	they might use one over the other.

	Coding tutorials often show us, step-by-step, how to write a program from top-to-
	Coding tutorials often show us, step-by-step, how to write a program from top-to-
	bottom. When using the inside-out approach, we often start with the innermost
	blocks and ask guiding questions to determine what to do next. In this way, the
	inside-out approach is important because it ensures learners are not just blindly
	following instructions. It teaches the importance of sequence (a fundamental
	coding concept!) and creates opportunities for learners to put blocks in the wrong
	place, problem solve, and use their creativity and decision-making skills to learn
	how and why something works.

	4.
	4.
	4.
	4.

	Student-Led Discovery
	Student-Led Discovery

	We want learners to be curious. We want them to break things, to try
	We want learners to be curious. We want them to break things, to try
	something new to see if it works, and to be okay with changing direction.
	Your learners need to be engaged in the education process and one way
	to do that is by asking questions and taking suggestions throughout the
	workshop - even if you know said suggestion is not the right answer!

	If a learner doesn’t know something, have them ask their elbow partner or
	If a learner doesn’t know something, have them ask their elbow partner or
	someone at their table, or when in doubt, try it out! There is always the undo
	button.

	5.
	5.
	5.
	5.

	Team Teaching
	Team Teaching
	

	Team teaching is exactly what it sounds like: two or more educators working
	Team teaching is exactly what it sounds like: two or more educators working
	together to help the learners work through the content. If you have two
	educators running a session, you might decide to collaboratively lead each
	session, or decide things run smoother with one educator leading and the
	other acting as a mentor.

	Regardless of the specifics, team teaching gives your learners different
	Regardless of the specifics, team teaching gives your learners different
	perspectives on how to solve problems and means they will have more
	chances for one-on-one support. It can also be comforting for new
	educators to know they are not alone!

	
	

	6.
	6.
	6.
	6.

	Learner Mentorship and Co-facilitation
	Learner Mentorship and Co-facilitation

	Some of the best educators are not subject matter experts, but are simply
	Some of the best educators are not subject matter experts, but are simply
	a few steps ahead of their learners! This is because they can often relate
	to and teach to the common pitfalls of current learners, having recently
	overcome these same issues themselves.

	If you have advanced learners in the room, consider asking if they would
	If you have advanced learners in the room, consider asking if they would
	be interested in mentoring other learners or joining as your ‘co-facilitator’
	for part of the workshop. Mentorship and co-facilitation have the potential
	to benefit many individuals within your group. Not only does it foster the
	development of leadership skills within your advanced learners, but it will
	solidify their understanding of key concepts. For groups with a wide range
	of prior experience, having additional mentors can help level the playing field
	and reduce the burden on educators.

	7.
	7.
	7.
	7.

	Hands-Off Approach
	Hands-Off Approach

	Whenever possible, we want to keep our hands off the learner devices.
	Whenever possible, we want to keep our hands off the learner devices.
	Even though it might be tempting to quickly jump on and fix something
	for them, it is important that the learners get into the habit of problem
	solving on their own. Let us be clear: this does not mean you should not
	help your learners. It simply means we will not do things for them that
	they can troubleshoot themselves! For learners that are really stuck, you
	can always verbally direct and point them in the direction of the right
	answer without physically touching the keyboard and trackpad/mouse
	to complete the problem yourself. At the very least, they will have gone
	through the motions themselves!

	Figure
	Figure
	Figure
	Facilitation
	Facilitation
	Facilitation
	Strategies

	Figure
	Figure
	Figure
	Managing
	Managing
	Managing
	Behaviour
	in the
	Presence of
	Technology

	If you’ve ever seen
	If you’ve ever seen
	youth with technology,
	you might be nervous
	about the prospect of
	directing their focus
	away from the screen
	and onto you!

	Here are our recommendations for maintaining active
	Here are our recommendations for maintaining active
	engagement during your sessions:

	1.
	1.
	1.
	1.

	Coders’ Code
	Coders’ Code

	The Coders’ Code is a collaborative social agreement that highlights
	The Coders’ Code is a collaborative social agreement that highlights
	the type of behaviour expected from all participants during the lesson.

	Consider creating your own Coders’ Code with your group at the start
	Consider creating your own Coders’ Code with your group at the start
	of the workshop. Ask your learners what they need from you to have
	fun and learn. What do they need from each other? What do you need
	from them?

	Coders’ Code Example
	Coders’ Code Example

	We will...
	We will...

	•
	•
	•
	•

	listen to whoever is speaking at the moment.
	listen to whoever is speaking at the moment.

	•
	•
	•

	show patience and kindness to others in the room.
	show patience and kindness to others in the room.

	•
	•
	•

	ask questions when we are having trouble.
	ask questions when we are having trouble.

	•
	•
	•

	support others who may be stuck.
	support others who may be stuck.

	•
	•
	•

	try our best to complete each task!
	try our best to complete each task!

	Agree upon 4-5 expectations with the group and write them
	Agree upon 4-5 expectations with the group and write them
	somewhere the learners can see (chart paper, whiteboard, etc.) You
	can refer back to the Coders’ Code when behavioural issues arise,
	especially if they violate the expectations everyone agreed upon!
	Finally, the Coders’ Code is a living document so things can be added
	or removed, as needed!

	2.
	2.
	2.
	2.

	Politeness Mode
	Politeness Mode
	9

	You can prevent screen distractions when you are speaking at the front
	You can prevent screen distractions when you are speaking at the front
	of the room by using ‘Politeness Mode’. When in ‘Politeness Mode’,
	laptops are closed halfway and the monitors of desktop computers are
	turned off, so the computer screen is not visible. Consider using this
	approach when walking through a new step at the front of the room.
	Have learners open their laptops or turn on their screens once it is their
	turn to complete a task!

	3.
	3.
	3.
	3.

	Transparency on Timing
	Transparency on Timing

	Create a predictable environment by writing down the schedule for
	Create a predictable environment by writing down the schedule for
	each session (including break times!) somewhere visible, or using
	timers for periods of independent work, so learners know how much
	time they have left for each task. Try using
	timer-tab.com
	 to project a
	countdown that everyone can see!
	10

	4.
	4.
	4.
	4.

	Call-and-Response
	Call-and-Response

	If you lose the attention of your group, don’t bother trying to raise your voice!
	If you lose the attention of your group, don’t bother trying to raise your voice!
	
	Use the call-and-response
	technique where you say something and the group has to respond.

	Call-and-Response Examples:
	Call-and-Response Examples:

	Educator: “To infinity…” Learners: “And beyond!”
	Educator: “To infinity…” Learners: “And beyond!”

	Educator: “Stop!” Learners: “Collaborate and listen!”
	Educator: “Stop!” Learners: “Collaborate and listen!”

	Educator: “If you can hear me…
	Educator: “If you can hear me…

	•
	•
	•
	•

	Wave like the queen!”
	Wave like the queen!”

	•
	•
	•

	Give your partner bunny ears!”
	Give your partner bunny ears!”

	•
	•
	•

	Raise your left hand... raise your right hand... give yourself a high-five!”
	Raise your left hand... raise your right hand... give yourself a high-five!”

	•
	•
	•

	Snap 1 time. Snap 2 times. Snap 10 times!”
	Snap 1 time. Snap 2 times. Snap 10 times!”

	When working with technology, it is helpful to add some accessible physical components to keep learners’
	When working with technology, it is helpful to add some accessible physical components to keep learners’
	hands up and away from the keyboard when you have something important to demonstrate.

	5.
	5.
	5.
	5.

	Learner-driven Lessons
	Learner-driven Lessons

	Avoid giving a lecture or talking at your learners. Ask them questions, guiding them towards figuring it out
	Avoid giving a lecture or talking at your learners. Ask them questions, guiding them towards figuring it out
	and giving you the solutions instead!

	Examples:
	Examples:

	•
	•
	•
	•

	Think-Pair-Share
	Think-Pair-Share

	When asking for feedback, give everyone a chance to share their thoughts by using the Think-Pair-Share
	When asking for feedback, give everyone a chance to share their thoughts by using the Think-Pair-Share
	technique. First, give learners 30 seconds to think about their own answer to the question. Next, give them
	1-2 minutes to share their ideas with 2-3 people nearby. Finally, ask for a few individuals to share what they
	discussed with the group. This is less intimidating than asking learners to share with the group right away.

	•
	•
	•
	•

	Voting
	Voting

	Need to make a decision? Have learners vote by giving a thumbs up or thumbs down.
	Need to make a decision? Have learners vote by giving a thumbs up or thumbs down.

	•
	•
	•
	•

	Demos
	Demos

	Ask learners to come to the front and demonstrate their solutions for the class using the educator’s
	Ask learners to come to the front and demonstrate their solutions for the class using the educator’s
	computer. Did another learner approach the same problem in a different way? Ask them to show the class
	their approach! Did someone figure out something really cool? Have them share with the group!

	6.
	6.
	6.
	6.

	Model Good Behaviour
	Model Good Behaviour

	Some learners will get very frustrated when their computer isn’t working the way they want it to. Try to
	Some learners will get very frustrated when their computer isn’t working the way they want it to. Try to
	reduce this frustration by modeling good behaviour. Show learners how to positively respond to technical
	issues and verbalize your thought process while trying to debug problems. See the ‘Debugging Strategies’
	section for more information.

	7.
	7.
	7.
	7.

	Student-Led Discovery
	Student-Led Discovery

	While each workshop introduces coding concepts and specific challenges and tasks in the Code-Along
	While each workshop introduces coding concepts and specific challenges and tasks in the Code-Along
	portion, allow learners to explore during the work session, running with their own ideas and questions while
	remixing. They will feel more engaged when they have autonomy over their projects. See the ‘Facilitation
	Strategies’ section for more information on Student-Led Discovery.

	Figure
	Figure
	Figure
	Resources
	Resources
	Resources

	1.
	1.
	1.
	1.
	1.

	“Exact Instructions Challenge PB&J Classroom Friendly | Josh
	“Exact Instructions Challenge PB&J Classroom Friendly | Josh
	Darnit.”
	YouTube
	, uploaded by Josh Darnit, 18 Apr. 2017, https://
	www.youtube.com/watch?v=FN2RM-CHkuI. Accessed 11 Mar. 2020.

	2.
	2.
	2.

	Gustafson, Ingrid. “Overheard In the Classroom.” ScratchEd, 20
	Gustafson, Ingrid. “Overheard In the Classroom.” ScratchEd, 20
	Jul. 2016, http://scratched.gse.harvard.edu/resources/overheard-
	classroom-ingrid-gustafson. Accessed 10 Mar. 2020.

	3.
	3.
	3.

	Roach, Emily. “Celebrating Mistakes and Embracing Process.”
	Roach, Emily. “Celebrating Mistakes and Embracing Process.”
	ScratchEd, 3 Mar. 2017, http://scratched.gse.harvard.edu/stories/
	see-inside-classroom-emily-roach. Accessed 10 Mar. 2020.

	4.
	4.
	4.

	ScratchEd Team. “Debugging in Scratch: Resources and Strategies.”
	ScratchEd Team. “Debugging in Scratch: Resources and Strategies.”
	ScratchEd, 18 Apr. 2017, https://scratched.gse.harvard.edu/
	resources/debugging-scratch-resources-and-strategies.html.
	Accessed 10 Mar. 2020.

	5.
	5.
	5.

	Tanguay-Carel, Matt. “Frustrations of Programming & How to Avoid
	Tanguay-Carel, Matt. “Frustrations of Programming & How to Avoid
	Them.” Codementor, 30 Nov. 2016, https://www.codementor.io/@
	matstc/avoid-frustration-as-programmers-ge54ddszr. Accessed 17
	July 2017.

	6.
	6.
	6.

	Goel, Sanjay, and Vanshi Kathuria. “A Novel Approach for
	Goel, Sanjay, and Vanshi Kathuria. “A Novel Approach for
	Collaborative Pair Programming Executive Summary.” Journal of
	Information Technology Education, vol. 9, 2010.

	7.
	7.
	7.

	Lye, Sze Yee, and Joyce Hwee Ling Koh. “Review on Teaching and
	Lye, Sze Yee, and Joyce Hwee Ling Koh. “Review on Teaching and
	Learning of Computational Thinking through Programming: What
	Is next for K-12?” Computers in Human Behavior, vol. 41, 2014, pp.
	51–61, doi:10.1016/j.chb.2014.09.012.

	8.
	8.
	8.

	McDowell, Charlie, et al. “Pair Programming Improves
	McDowell, Charlie, et al. “Pair Programming Improves
	Student Retention, Confidence, and Program Quality.”
	Communications of the ACM, vol. 49, Aug. 2006, pp. 90–95,
	doi:10.1145/1145287.1145293.

	9.
	9.
	9.

	Wilson, Greg. Data Scientist and Professional Educator at
	Wilson, Greg. Data Scientist and Professional Educator at
	RStudio, Inc. LinkedIn. https://www.linkedin.com/in/greg-wilson-
	a26510b6/?originalSubdomain=ca. Accessed 13 Mar. 2020.

	10.
	10.
	10.

	Brillout,
	Brillout,
	Romuald. Timer Tab
	. https://www.timer-tab.com/.
	Accessed 7 Mar. 2020.

	DATE:
	DATE:
	DATE:

	Figure
	DATE:
	DATE:
	DATE:

	Figure
	Figure
	GET IN TOUCH
	GET IN TOUCH
	GET IN TOUCH

	30 St Patrick St
	Toronto, ON M5T 3A3
	info@canadalearningcode.ca
	info@canadalearningcode.ca

	canadalearningcode.ca

	Figure

